High Efficiency 2-Channel LED Backlight Driver

Features

- Wide input range: $2.7 \mathrm{~V} \sim 5.5 \mathrm{~V}$
- High efficiency step-up 2-Channel LED driver
- 2-Ch current sinks, up to 8-LEDs per string
- Up to $29.8 \mathrm{~mA} / \mathrm{Ch}$ in backlight mode
- $+/-0.6 \%$ current matching at 20.2 mA
- +/-1.5\% current accuracy at 20.2 mA
- ${ }^{2} \mathrm{C} / \mathrm{PWM}$ dual dimming control scheme
- 11 -bit ${ }^{I 2} \mathrm{C}$ exponential or linear mapping with programmable transition ramp time
- Wide range PWM dimming with programable transition ramp time
- 100 Hz to 100 kHz frequency
- 0.2% to 100% duty cycle at 20 kHz
- Programmable current sink turn on/off ramp time and shape
- Selectable boost converter switching frequency 1 MHz or 500 kHz with 20% shift up option
- Programmable input PWM hysteresis to minimize jitter at low PWM duty cycle
- Programmable OVP ($25.9 \mathrm{~V} / 32 \mathrm{~V}$) and current limit (1.8A/2.6A)
- LED open/short protection
- Status reporting through $I^{2} \mathrm{C}$ interface

Applications

Brief Description

KTD3133 is the ideal power solution for LED backlighting in medium to large size LCD panels. It is a highly integrated step-up DC-DC converter operating with an input voltage from 2.7 V to 5.5 V , accommodating 1 -cell lithium ion batteries or 5 V supply. It includes a high voltage power NMOS, as well as two current sinks, resulting in a simpler and smaller solution with fewer external components. High switching frequency allows the use of a smaller inductor and capacitor.
Each of the two regulated current sinks can regulate up to 29.8 mA in backlight mode. With a maximum of 32 V at the output of the step-up converter, each string can connect up to 8 -LED in series for a 16-LED application.

KTD3133 is equipped with $I^{2} \mathrm{C}$ interface for various controls. For additional flexibility, PWM dimming with wide range frequency and duty cycle is included to support Content Adaptive Brightness Control (CABC).

Various protection features are built into KTD3133, including cycle-by-cycle inductor current limit protection, output over-voltage protection, LED fault (open or short) protection and thermal shutdown protection.
KTD3133 is available in a RoHS compliant 12-ball 1.19 mm $\times 1.64 \mathrm{~mm}$ WLCSP or a 16 -lead $3 \mathrm{~mm} \times 3 \mathrm{~mm} \times 0.75 \mathrm{~mm}$ Thin-QFN package.

- Smartphone/Tablet Backlight

Typical Application

Pin Description

Pin \#		Name	
WLCSP-12	TQFN33-16		
A1	13	PWM	PWM dimming input pin. There is an internal $400 \mathrm{k} \Omega$ pull-down resistor at this pin to GND.
A2	14	SDA	Bi-directional data pin of the I ${ }^{2}$ C interface.
A3	16	HWEN	Active high hardware enable pin. There is an internal 400k Ω pull-down resistor at this pin to GND.
B1	10	S1	Regulated output current sink \#1.
B2	15	SCL	Clock input pin of the I ${ }^{2}$ C interface.
B3	1	VIN	Input supply pin for the IC.
C1	11	S2	Regulated output current sink \#2.
C2, D1	$2,3,8,9$	AGND	Analog ground pin.
C3	4	PGND	Power ground pin.
D2	7	VOUT	Output voltage sense pin of the step-up converter.
D3	5,6	LX	Switching pin of the step-up converter.
	MC		Metal chassis. Connect to ground for electrical and thermal usage. MC is internally connected to AGND pin.

WLCSP-12
Top View

TOP VIEW

12-Bump $1.19 \mathrm{~mm} \times 1.64 \mathrm{~mm} \times 0.62 \mathrm{~mm}$ WLCSP Package

Top Mark
WW = Device ID Code = MA
XX = Date Code, YY = Assembly Code ZZZZ = Serial Number

TOP VIEW

TQFN33-16
Top View

Absolute Maximum Ratings ${ }^{1}$

($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Symbol	Description	Value	Units
VIN	Input Voltage	-0.3 to 6	V
LX, VOUT	High Voltage Nodes	-0.3 to 35	V
S1, S2	High Voltage Nodes	-0.3 to 22	V
SCL, SDA, PWM, HWEN	Control Pins	-0.3 to VIN+0.3	V
T_{J}	Junction Operating Temperature Range	-40 to 150	${ }^{\circ} \mathrm{C}$
Ts_{s}	Storage Temperature Range	-65 to 150	${ }^{\circ} \mathrm{C}$
TLEAD	Maximum Soldering Temperature (at leads, 10 sec$)$	300	${ }^{\circ} \mathrm{C}$
ESD	HBM Electrical Static Discharge	2.0	kV

Thermal Capabilities ${ }^{2}$

Symbol	Description	Value	Units	
WLCSP-12				
θ_{JA}	Thermal Resistance - Junction to Ambient	89	${ }^{\circ} \mathrm{C} / \mathrm{W}$	
P_{D}	Maximum Power Dissipation at $\mathrm{T}_{\mathrm{A}} \leq 25^{\circ} \mathrm{C}$	1410	mW	
$\Delta \mathrm{P}_{\mathrm{D}} / \Delta \mathrm{T}$	Derating Factor Above $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-11.3	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$	
TQFN33-16				
θ_{JA}	Thermal Resistance - Junction to Ambient	42	${ }^{\circ} \mathrm{C} / \mathrm{W}$	
P_{D}	Maximum Power Dissipation at $\mathrm{T}_{\mathrm{A}} \leq 25^{\circ} \mathrm{C}$	2976	mW	
$\Delta \mathrm{P}_{\mathrm{D}} / \Delta \mathrm{T}$	Derating Factor Above $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	23.8	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$	

Ordering Information

Part Number	$\mathbf{I}^{2} \mathrm{C}$ Device Address	Marking 3	Operating Temperature	Package
KTD3133EUS-TR	36 h	MAXXYYZZZZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	WLCSP-12
KTD3133EFJ-TR	36 h	MAYYZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	TQFN33-16
KTD3133AEUS-TR	35 h	NEXXYYZZZZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	WLCSP-12
KTD3133AEFJ-TR	35 h	NEYYZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	TQFN33-16

[^0]
Electrical Characteristics ${ }^{4}$

Unless otherwise noted, the Min and Max specs are applied over the full operation temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, while Typ values are specified at room temperature $\left(25^{\circ} \mathrm{C}\right)$. $\mathrm{V}_{\mathbb{N}}=3.6 \mathrm{~V}$.

Symbol	Description	Conditions	Min	Typ	Max	Units
IC Supply						
VIN	Input operating range		2.7		5.5	V
UVLO	Input under voltage lockout	Rising edge		2.45	2.65	V
UVLOHYSt	UVLO hysteresis			0.05		V
1 Q	IC operating V ${ }_{\text {IN }}$ current	Switching		1.9		mA
Ishon	IC shutdown Vin current	Vin $=5.5 \mathrm{~V}, \mathrm{HWEN}=$ GND		0.5		$\mu \mathrm{A}$
Isb	IC standby Vin current	$\begin{aligned} & \text { Standby, } \mathrm{V}_{\mathrm{IN}}=4.2 \mathrm{~V}, \\ & \text { HWEN }=\text { SDA }=\mathrm{SCL}=1.8 \mathrm{~V} \end{aligned}$		7		$\mu \mathrm{A}$
Step-Up Converter						
R ${ }_{\text {dS(ON) }}$	NMOS on-resistance			0.2		Ω
ILim	Peak NMOS current limit	Default setting		1.8		A
Fsw	Oscillator frequency	Default setting		1.0		MHz
Dmax	Maximum duty cycle	FSW $=1 \mathrm{MHz}$		94		\%
Vovp	OVP threshold	Default setting		32		V
Current Sink						
IsINK	Output current accuracy	Current setting $=1 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-4		4	\%
		Current setting $=20.2 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-1.5		1.5	\%
	Output current matching ${ }^{5}$	Current setting $=1 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-1.2		1.2	\%
		Current setting $=20.2 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-0.8		0.8	\%
Vsov	Current sink over voltage threshold			12		V
T fault	Current sink fault delay			6		$\mu \mathrm{s}$
Logic Control						
$\mathrm{V}_{\text {TH-L }}$	HWEN/PWM logic low threshold				0.4	V
$\mathrm{V}_{\text {TH-H }}$	HWEN/PWM logic high threshold		1.4			V
FPwm	PWM dimming frequency		0.1		100	kHz
TPWM_ON	PWM on time		0.1			$\mu \mathrm{s}$
TPWM_OFF	PWM off pulse low width		20			ms
RPull-Down	HWEN/PWM pull down resistors			400		k Ω

[^1]
Electrical Characteristics ${ }^{4}$

Symbol	Description	Conditions	Min	Typ	Max	Units
$I^{2} \mathrm{C}$-Compatible Voltage Specifications (SCL, SDA)						
VIL	Input Logic Low Threshold				0.4	V
$\mathrm{V}_{\text {IH }}$	Input Logic High Threshold		1.4			V
Vol	SDA Output Logic Low	$\mathrm{I}_{\text {SDA }}=3 \mathrm{~mA}$			0.4	V
$I^{2} \mathrm{C}$-Compatible Timing Specifications (SCL, SDA), see Figure 1						
t_{1}	SCL clock period		2.5			$\mu \mathrm{s}$
t_{2}	Data in setup time to SCL high		100			ns
t_{3}	Data out stable after SCL low		0			ns
t_{4}	SDA low setup time to SCL low (Start)		100			ns
t_{5}	SDA high hold time after SCL high (Stop)		100			ns
Thermal Shutdown						
$\mathrm{T}_{\text {J-TH }}$	IC thermal shutdown threshold			150		${ }^{\circ} \mathrm{C}$
	IC thermal shutdown hysteresis			15		${ }^{\circ} \mathrm{C}$

Figure 1. $\mathrm{I}^{2} \mathrm{C}$ Compatible Interface Timing

Typical Characteristics

$\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}, 2 P 7 S$ LEDs, $\mathrm{I}_{\text {led }}=20.2 \mathrm{~mA}, \mathrm{~L}=10 \mu \mathrm{H}$ (Murata LQH3NPN100MJR), $\mathrm{C}_{\mathrm{IN}}=10 \mu \mathrm{~F}$, Cout $=1 \mu \mathrm{~F}$, $1^{2} \mathrm{C}$ register default settings, Temp $=25^{\circ} \mathrm{C}$ unless otherwise specified.

LED Driver Efficiency vs. VIN (LED $=20.2 \mathrm{~mA}$)

Operating Current (Switching)

HWEN Logic Threshold Voltage

LED Driver Efficiency vs. LED Current (2P7S)

Switching Frequency vs. VIN

PWM Logic Threshold Voltage

Typical Characteristics

$\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}, 2 P 7 S$ LEDs, $\mathrm{I}_{\text {Led }}=20.2 \mathrm{~mA}, \mathrm{~L}=10 \mu \mathrm{H}$ (Murata LQH3NPN100MJR), $\mathrm{C}_{\mathrm{IN}}=10 \mu \mathrm{~F}$, Cout $=1 \mu \mathrm{~F}$, $1^{2} \mathrm{C}$ register default settings, Temp $=25^{\circ} \mathrm{C}$ unless otherwise specified.

LED Current vs. Current Ratio Code (11 bits, Exponential)

LED Current vs. PWM Duty Cycle (20kHz)

LED Current vs. Current Ratio Code
(11 bits, Linear)

LED Current Line Regulation

Typical Characteristics

$\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}, 2 P 7 S$ LEDs, $\mathrm{I}_{\text {led }}=20.2 \mathrm{~mA}, \mathrm{~L}=10 \mu \mathrm{H}$ (Murata LQH3NPN100MJR), $\mathrm{C}_{\mathrm{IN}}=10 \mu \mathrm{~F}$, Cout $=1 \mu \mathrm{~F}$, $1^{2} \mathrm{C}$ register default settings, Temp $=25^{\circ} \mathrm{C}$ unless otherwise specified.

Turn On by ${ }^{2} \mathbf{C}$

Ramp Up/Down Exponential (256ms)

Ramp Up/Down Linear (256ms)

KTD3133

Typical Characteristics

$\mathrm{V}_{\mathrm{In}}=3.6 \mathrm{~V}, 2 \mathrm{P} 7 \mathrm{~S}$ LEDs, $\mathrm{I}_{\text {Led }}=20.2 \mathrm{~mA}, \mathrm{~L}=10 \mu \mathrm{H}$ (Murata LQH3NPN100MJR), $\mathrm{C}_{\mathrm{In}}=10 \mu \mathrm{~F}$, Cout $=1 \mu \mathrm{~F}$, $1^{2} \mathrm{C}$ register default settings, Temp $=25^{\circ} \mathrm{C}$ unless otherwise specified.

Turn On with LED Open (OVP = 32V)

Turn On with LED Open (OVP = 25.9V)

Functional Block Diagram

Functional Description

KTD3133 is a unique current regulated step-up (boost) converter. Two current sinks are integrated to drive 2 strings of LEDs with good current matching and accuracy.
The voltage step-up is accomplished by a boost topology, using an inductor-based DC-DC switching converter, in which the inductor serves as an energy storage device in the system. Unlike a traditional DC-DC boost converter with a fixed output voltage, the KTD3133 dynamically changes its output voltage depending on the load. The use of unique control schemes maintains accurate current regulation in each of the two current sinks while leaving the output voltage at a minimum, increasing the overall conversion efficiency. The internal step-up converter dynamically controls the voltage at the output high enough to drive the LED string with the highest total forward voltage.

Hardware Enable \& Standby Mode

KTD3133 has a logic input HWEN pin to enable/disable the device. When HWEN is set low, the device goes into shutdown mode, all $I^{2} \mathrm{C}$ registers are reset to default, and the $I^{2} \mathrm{C}$ interface is disabled. Under this condition, the device does not respond to any ${ }^{2} \mathrm{C}$ command. Even when SCL/SDA's pull up voltage is much less than VIN voltage, it will not cause any extra leakage current.
When HWEN is set high, the device goes into standby mode, the $I^{2} \mathrm{C}$ interface is enabled, and the device can respond to $I^{2} \mathrm{C}$ command. Under this condition, if SCL/SDA's pull up voltage is much less than VIN voltage, it can cause a small leakage current. For example, if $\mathrm{VIN}=4.2 \mathrm{~V}$ and SCL/SDA's pull up voltage is 1.8 V , there will be around $7 \mu \mathrm{~A}$ additional leakage current from VIN in this standby mode.

Based on HWEN's connection, there are two kinds of power-up sequences, shown in Figure 2 and Figure 3.

- If HWEN is tied to VIN, once VIN goes above around 2.0V, HWEN should stay high for at least twait $=150 \mu \mathrm{~s}$ time before any $\mathrm{I}^{2} \mathrm{C}$ command can be accepted.
- If HWEN is driven by a GPIO, once HWEN goes from low to high, HWEN should stay high for at least $t_{\text {wait }}=150 \mu$ s time before receiving any $I^{2} \mathrm{C}$ command.

Figure 2. Power Up Sequence with HWEN Tied to VIN

Figure 3. Power Up Sequence with HWEN Driven by GPIO
Either HWEN input or ${ }^{2} \mathrm{C}$ command can be used to turn off the part, but there are some differences.

- If setting HWEN input low to turn off the part, the LED current will be turned off immediately without any ramp down control. After that, the $\mathrm{I}^{2} \mathrm{C}$ interface is disabled.
- If using an $I^{2} C$ command to turn off backlight mode while keeping HWEN high, the LED current will have ramp down control. After the LED current ramp down is finished, the $I^{2} \mathrm{C}$ interface is still alive waiting for new command.

Backlight Mode

Once HWEN is set high, ${ }^{2}$ C Mode Register 0x02 Bit[0] (see Table 6) is used to enable/disable backlight mode.

Backlight Full-scale LED Current

The backlight mode's full-scale LED current lled_fs is defined as the LED current in backlight mode when PWM dimming duty cycle Dpwn is 100% and the LED current ratio RATIOLED is also 100\%. ILEd_fs is programmed by the Mode Register 0x02 Bits[7:3] (see Table 6). Full scale current ranges from 5 mA to 29.8 mA with $0.8 \mathrm{~mA} / \mathrm{step}$ and 20.2 mA as the default.

Backlight PWM Dimming

In backlight PWM mode, the input PWM duty cycle is converted internally to produce a DC output sink current (not pulsing). Backlight PWM dimming can be enabled or disabled by the PWM Register 0x06 Bit[7] (see Table 10), with enabled as default. When PWM is disabled, KTD3133 uses 100% as the dimming duty cycle for sink current calculation. When PWM is enabled, it can be programmed as either active high or active low by PWM Register 0×06 Bit[6], with active high as default. When PWM dimming is enabled, KTD3133 uses internal 20 MHz sampling clock to detect the PWM duty cycle. It is recommended to have the minimum PWM on time as $0.1 \mu \mathrm{~s}$. For the example of 20 kHz dimming frequency, the PWM duty cycle range can be $0.2 \% \sim 100 \%$. The PWM dimming frequency range can be as wide as 100 Hz to 100 kHz . When the input PWM duty cycle has a sudden change, there is a programmable transition ramp time controlled by Register 0x08 Bits[6:4] to make the LED current change smoother.

Backlight PWM Hysteresis

In backlight mode, if PWM dimming frequency is high and PWM dimming duty cycle is low, even the internal fast 20 MHz sampling clock's sampling error can be sufficient to cause the output LED current jitter. KTD3133 implements PWM hysteresis control to minimize the jitter. It can be programmed by PWM Register 0x06 Bits[5:3] (see Table 10). The input PWM duty cycle is converted to an internal 11-bit digital value, this PWM hysteresis decides how many LSBs of this 11-bit digital value is changed before the output LED current can follow the change. When PWM duty cycle changes in the same direction, no hysteresis exists. Only when the PWM duty cycle's change starts to go in different direction, does the hysteresis starts to take effect, and only when the change is larger or equal to the number of LSBs programmed, the output LED current starts to follow the change. Table 1 shows the relationship between the minimum LSB(s) and the PWM duty cycle hysteresis. Table 2 summarizes PWM Register 0x06 Bits[5:3]'s minimum setting to prevent jitter under different input PWM frequency conditions. The drawback of setting PWM hysteresis too high is that the output current becomes less accurate due to the hysteresis.

Table 1. PWM Hysteresis

PWM Register 0x06 Bits[5:3]	Minimum LSB(s)	PWM Duty Cycle Hysteresis
000	0	$0 / 2047=0 \%$
001	2	$2 / 2047=0.10 \%$
010	4	$4 / 2047=0.20 \%$
011	6	$6 / 2047=0.29 \%$
100	8	$8 / 2047=0.39 \%$
101	10	$10 / 2047=0.48 \%$
110	12	$12 / 2047=0.59 \%$
111	14	$14 / 2047=0.68 \%$

Table 2. Register 0x06 Bits[5:3]'s Minimum Setting

PWM Dimming Frequency (kHz)	Sampling Error	Register 0x06 Bits[5:3]'s Minimum Setting to Prevent Jitter
0.1	0.0005%	001
1	0.005%	001
5	0.025%	001
10	0.05%	001
20	0.1%	010
40	0.2%	011
100	0.5%	110

Backlight LED Current

The LED current is always a DC current. It can be programmed for either exponential mapping mode or linear mapping mode by Register 0x03 Bit[1]. These two modes determine the transfer characteristic of dimming code to LED current. It also has 11-bit control, including the 8-bit MSBs from LED Current Ratio MSB Register 0x05 Bits[7:0] (see Table 9) and the 3-bit LSBs from LED Current Ratio LSB Register 0x04 Bits[2:0] (see Table 8). If only 8 -bit dimming is needed, the 3 -bit LSBs should be kept as '111' while the 8 -bit MSBs are programmed. If 11-bit dimming ratio is needed, the 3-bit LSBs should be programmed first, then the 8-bit MSBs are programmed. Only programming the 3-bit LSBs doesn't change the current ratio until the 8-bit MSBs are programmed.

In linear mapping 8-bit dimming mode, the LED current per channel can be calculated as:

$$
I_{L E D_{-} B L}=I_{L E D_{-} F S} \times D_{P W M} \times \frac{\operatorname{Code}+1}{256} \quad(\text { Code }=0 \sim 255)
$$

where lled_fs is the backlight full-scale LED current, Dpwm is the input PWM duty cycle if PWM dimming is enabled, otherwise Dpwm=1.

In linear mapping 11-bit dimming mode, the LED current per channel can be calculated as:

$$
I_{L E D_{-} B L}=I_{L E D_{-} F S} \times D_{P W M} \times \frac{\text { Code }+1}{2048} \quad(\text { Code }=1 \sim 2047)
$$

For linear mapping 11-bit dimming's Code 0 , current sink and boost converter will be disabled, LED will be turned off.

In exponential mapping 8-bit dimming mode, the LED current per channel can be calculated as:

$$
I_{L E D_{-} B L}=I_{\text {LED_ } E S} \times D_{P W M} \times \frac{1.002931237^{\text {Code } \times 8+7}}{400} \quad(\text { Code }=0 \sim 255)
$$

In exponential mapping 11-bit dimming mode, the LED current per channel can be calculated as:

$$
I_{L E D_{-} B L}=I_{L_{L E D_{-} F S}} \times D_{P W M} \times \frac{1.002931237^{\text {Code }}}{400} \quad(\text { Code }=1 \sim 2047)
$$

For exponential mapping 11-bit dimming's Code 0, current sink and boost converter will be disabled, LED will be turned off.

Turn On/Off Ramp

When backlight mode is enabled from standby mode or disabled to standby mode, the LED current waveform's turn on/off time is controlled by Turn On/Off Ramp Register 0x07 Bits[7:4] and Bits[3:0] respectively (see Table 11). The 16 options range from 512μ s to 16384 ms , with 8 ms as default. The shape of the turn on/off ramp in backlight mode can also be programmed as exponential or linear through the Control Register 0x03 Bit[2], with exponential as default. If the switching frequency shift up by 20% is selected, all ramp times will be decreased by 20%.

$I^{2} \mathrm{C}$ Dimming Transition Ramp

After the turn on ramp is finished, if the LED current is changed from one value to the other by $\mathrm{I}^{2} \mathrm{C}$ dimming Register 0x04 and Register 0x05, the transition ramp time can be programmed by Transition Ramp Register $0 x 08$ Bits[3:0] (see Table 12). For Code 0001~1111, there are 15 programmable options (128ms ~ 1024ms) of the ramp time, it is independent of the $I^{2} \mathrm{C}$ dimming code change and will keep the same no matter how big the dimming code change is. For Code 0000, the slope of the ramp is fixed as 1 us/step, so the final transition ramp time is dependent on the 11 -bit $I^{2} \mathrm{C}$ dimming code change. If the switching frequency shift up by 20% is selected, all transition times will be decreased by 20%.

PWM Dimming Transition Ramp

After the turn on ramp is finished, if the LED current is changed from one value to the other by PWM dimming duty cycle, the transition ramp time can be programmed by Transition Ramp Register 0x08 Bits[6:4] (see Table 12). For this transition ramp, its slope is fixed, so the final transition ramp time is dependent on the change of the PWM duty cycle. If the switching frequency shift up by 20% is selected, all transition times will be decreased by 20%.

Channel Enable/Disable

To disable any channel, there are two options.

- Connect the associated sink pin to GND. During the startup, the IC will automatically detect and disable the corresponding channel.
- Program PWM Register 0x06 Bits[1:0] (See Table 10) to enable/disable the channel(s), with enable as default.

Switching Frequency

The step-up converter's switching frequency can be programmed to 1 MHz or 500 kHz by Control Register 0×03 Bit[6] (See Table 7), with 1 MHz as default. The adjustment of the switching frequency can optimize the efficiency under different load current conditions. The frequency can also be programmed to shift up by 20% using the Control Register 0×03 Bit[7], with no shift as default. The frequency shift function is to prevent noise interference if the selected switching frequency is within the sensitive frequency range of the system.

Over Voltage Protection (OVP)

The output voltage of the step-up converter is protected by OVP, its threshold can be programmed by the Control Register 0x03 Bit[5] (See Table 7) as 32V or 25.9 V , with 32 V as default.

Inductor Current Limit Protection

The step-up converter is protected by cycle-by-cycle inductor current limit protection, its threshold can be programmed by the Control Register 0x03 Bit[3] (See Table 7) as 1.8 A or 2.6 A , with 1.8 A as default.

Software Reset

All the $I^{2} \mathrm{C}$ registers can be rese to their default settings by writing ' 1 ' to the Software Reset Register 0×01 Bit[0] (see Table 5), this bit will be reset to ' 0 ' automatically after the software reset.

LED Fault Protection

Each current sink is protected against LED short or open conditions.
If LED short circuit condition arises, the current sink continues to regulate until the sink node voltage goes above $\mathrm{V}_{\text {sov }}(12 \mathrm{~V}$) for more than $6 \mu \mathrm{~s}$, then the Current Sink Fault Protection is triggered, the boost converter will be stopped to prevent VOUT from rising up, and current sink will be kept on to discharge VOUT.
In case of an LED failing open, the current sink voltage of the failed string will go close to ground and dominate the boost converter control loop. As a result, the output voltage will increase until it reaches the over-voltage threshold. Once the over-voltage incident is triggered, the boost converter will be turned off, and all the other healthy channels will be on to discharge VOUT. During the rise of VOUT, if the healthy channels' sink voltages reach V sov $(12 \mathrm{~V})$ for $6 \mu \mathrm{~s}$ before VOUT reaches its over-voltage threshold, this will trigger LED short protection, not LED open protection.

After LED open or short protection, user needs to restart the IC by toggling HWEN or sending software reset command or resetting backlight mode.
UVLO
Under voltage lock-out (UVLO) featured is included to monitor the input voltage VIN. Once VIN drops below UVLO falling threshold, the current sinks are disabled and the boost converter stops switching. After VIN increases above UVLO rising threshold, the boost converter and the current sinks will resume to their previous setting.

Thermal Shutdown

Thermal shutdown feature is included to monitor the IC's junction temperature. If it reaches $150^{\circ} \mathrm{C}$, the current sinks are disabled and the boost converter stops switching. Once it drops $15^{\circ} \mathrm{C}$ to approximately $135^{\circ} \mathrm{C}$, the boost converter and the current sinks will resume to their previous setting.

Status Report

Various status conditions can be reported through $1^{2} \mathrm{C}$ interface by the read-only Status Register 0x0A (See Table 13), including channel fault (LED open or short), OVP, UVLO, OCP (inductor current limit) and thermal shutdown. Channel fault, UVLO and thermal shutdown are real-time results when backlight mode is enabled and it can be reset by toggling backlight mode. The remaining faults are latched results and can be reset by reading back Status Register 0x0A through $I^{2} \mathrm{C}$ interface or toggling backlight mode. All the status bits can also be reset by VIN power on reset, software reset or toggling HWEN.

Application Information

$I^{2} \mathrm{C}$ Serial Data Bus

KTD3133 supports the $\mathrm{I}^{2} \mathrm{C}$ bus protocol. A device that sends data onto the bus is defined as a transmitter and a device receiving data as a receiver. The device that controls the bus is called a master, whereas the devices controlled by the master are known as slaves. A master device must generate the serial clock (SCL), control bus access and generate START and STOP conditions to control the bus. KTD3133 operates as a slave on the $I^{2} \mathrm{C}$ bus. Within the bus specifications a standard mode (100 kHz maximum clock rate) and a fast mode (400 kHz maximum clock rate) are defined. KTD3133 works in both modes. Connections to the bus are made through the open-drain I/O lines SDA and SCL.

The following bus protocol has been defined in Figure 4:

- Data transfer may be initiated only when the bus is not busy.
- During data transfer, the data line must remain stable whenever the clock line is HIGH. Changes in the data line while the clock line is high are interpreted as control signals.

Accordingly, the following bus conditions have been defined:

Bus Not Busy

Both data and clock lines remain HIGH.

Start Data Transfer

A change in the state of the data line, from HIGH to LOW, while the clock is HIGH, defines a START condition.

Stop Data Transfer

A change in the state of the data line, from LOW to HIGH, while the clock line is HIGH, defines the STOP condition.

Data Valid

The state of the data line represents valid data when, after a START condition, the data line is stable for the duration of the HIGH period of the clock signal. The data on the line must be changed during the LOW period of the clock signal. There is one clock pulse per bit of data.
Each data transfer is initiated with a START condition and terminated with a STOP condition. The number of data bytes transferred between START and STOP conditions are not limited, and are determined by the master device. The information is transferred byte-wise and each receiver acknowledges with a ninth bit.

Acknowledge

Each receiving device, when addressed, is obliged to generate an acknowledge after the reception of each byte. The master device must generate an extra clock pulse that is associated with this acknowledge bit.
A device that acknowledges must pull down the SDA line during the acknowledge clock pulse in such a way that the SDA line is stable LOW during the HIGH period of the acknowledge-related clock pulse. Setup and hold times must also be taken into account.

Figure 4. Data Transfer on $\mathrm{I}^{2} \mathrm{C}$ Serial Bus
KTD3133 7-bit slave device address is 0110110 binary ($0 \times 36 \mathrm{~h}$).
KTD3133A 7 -bit slave device address is 0110101 binary ($0 \times 35 \mathrm{~h}$)
There are two kinds of ${ }^{2} \mathrm{C}$ data transfer cycles: write cycle and read cycle.

$I^{2} \mathrm{C}$ Write Cycle

For $I^{2} \mathrm{C}$ write cycle, data is transferred from a master to a slave. The first byte transmitted is the 7 -bit slave address plus one bit of ' 0 ' for write. Next follows a number of data bytes. The slave returns an acknowledge bit after each received byte. Data is transferred with the most significant bit (MSB) first. Figure 5 shows the sequence of the $\mathrm{I}^{2} \mathrm{C}$ write cycle.

\square

From Master to Slave

From Slave to Master

$$
\begin{aligned}
& \text { S = Start } \\
& \text { A = Acknowledge (SDA Low) } \\
& \text { P = Stop }
\end{aligned}
$$

Figure 5. ${ }^{2}$ C Write Cycle
${ }^{12} \mathrm{C}$ Write Cycle Steps:

- Master generates start condition.
- Master sends 7-bit slave address (0110110 for KTD3133, 0110101 for KTD3133A) and 1-bit data direction '0' for write.
- Slave sends acknowledge if the slave address is matched.
- Master sends 8 -bit register address.
- Slave sends acknowledge.
- Master sends 8 -bit data for that addressed register.
- Slave sends acknowledge.
- If master sends more data bytes, the register address will be incremented by one after each acknowledge.
- Master generate stop condition to finish the write cycle.

I^{2} C Read Cycle

For $I^{2} \mathrm{C}$ read cycle, data is transferred from a slave to a master. But to start the read cycle, master needs to write the register address first to define which register data to read. Figure 6 shows the steps of the $\mathrm{I}^{2} \mathrm{C}$ read cycle.

From Master to Slave	S = Start Rs = Repeated Start From Slave to Master $A^{*}=$ No Acknowledge (SDA Low) $P=$ Stop

Figure 6. ${ }^{2}$ C Read Cycle
${ }^{1} 2 \mathrm{C}$ Read Cycle Steps:

- Master generates start condition.
- Master sends 7-bit slave address (0110110 for KTD3133, 0110101 for KTD3133A) and 1-bit data direction '0' for write.
- Slave sends acknowledge if the slave address is matched.
- Master sends 8-bit register address.
- Slave sends acknowledge.
- Master generates repeated start condition.
- Master sends 7-bit slave address (0110110 for KTD3133, 0110101 for KTD3133A) and 1-bit data direction '1' for read.
- Slave sends acknowledge if the slave address is matched.
- Slave sends the data byte of that addressed register.
- If master sends acknowledge, the register address will be incremented by one after each acknowledge and the slave will continue to send the data for the updated addressed register.
- If master sends no acknowledge, the slave will stop sending the data.
- Master generate stop condition to finish the read cycle.

$\mathrm{I}^{2} \mathrm{C}$ Register Map

Table 3 summarizes KTD3133's $11 I^{2} \mathrm{C}$ registers, their read/write settings and default values. They can be reset to default values by VIN power on reset, toggling HWEN or $\mathrm{I}^{2} \mathrm{C}$ software reset.

Table 3. I ${ }^{2} \mathrm{C}$ Register Map

Register Name	Address (Hex)	R/W	Default Value
Device ID Register	0×00	R	18
SW Reset Register	0×01	R / W	00
Mode Register	0×02	R / W	98
Control Register	0×03	R / W	60
LED Current Ratio LSB Register	0×04	R / W	07
LED Current Ratio MSB Register	0×05	R / W	FF
PWM Register	0×06	R / W	1 F
Turning On/Off Ramp Register	0×07	R / W	44
Transition Ramp Register	0×08	R / W	00
Status Register	$0 \times 0 \mathrm{~A}$	R	00

Table 4. Device ID Register (0x00)

Bits[7:5]	Bits[5:3] Device ID	Bits[2:0]
Reserved	011	Reserved

Table 5. SW Reset Register (0x01)

Bits[7:1]	Bit[0]
Reserved	Software Reset
0: Don't reset (Default)	
1: Reset	

Note: Writing software reset bit to ' 1 ' will reset all $I^{2} \mathrm{C}$ registers to their default values, then this bit will be internally reset back to ' 0 '.
Table 6. Mode Register (0x02)

Bits[7:3]	Bits[2:1]	Bit[0] Backlight Mode		
Backlight Full-scale LED Current ILED_Fs			\quad	
:---:				
LLED_Fs $=5 \mathrm{~mA}+$ Code $\times 0.8 \mathrm{~mA}$				
$11111: 29.8 \mathrm{~mA}$				
$\ldots \ldots$				
$10011: 20.2 \mathrm{~mA}$ (Default)				
$00001: 5.8 \mathrm{~mA}$				
$00000: 5 \mathrm{~mA}$				

Table 7. Control Register (0x03)

Bit[7] Switching Frequency Shift Up	Bit[6] Switching Frequency	Bit[5] OVP Control	Bit[4]	Bit[3] Inductor Current Limit	Bit[2] Backlight Turn On/Off Ramp Shape	Bit[1] Backlight Current Mapping	Bit[0]
0: No Shift (Default)	$0: 500 \mathrm{kHz}$ $1: 1000 \mathrm{kHz}$	$0: 25.9 \mathrm{~V}$ $1: 32 \mathrm{~V}$ 1: Shift Up by 20\%	Reserved (Default)	$0: 1.8 \mathrm{~A}$ (Default)	0: Exponential with "0"	$0:$ Exponential (Default) (Default) (Default) (Defa	Reserved
1: Linear	1:Linear						

Note: When Backlight Current Mapping setting is changed, the LED current change will not take effect until Register 0x05 is programmed.
Table 8. Brightness Register LSB (0x04)

Bits[7:3]	Bits[2:0]
Reserved	Lower 3 bits of the 11-bit LED current ratio (Default: 111)

Table 9. Brightness Register MSB (0x05)

Bits[7:0]
LED Current Ratio MSBs (8 bits)
Higher 8 bits of the 11-bit LED current ratio (Default: 11111111)

Note:

1. If only using 8-bit current ratio, keep the 3 -bit LSBs as ' 111 ' and only program the 8 -bit MSBs.
2. If using 11-bit current ratio, the 3-bit LSBs should be programmed first, then the 8 -bit MSBs can be programmed to take effect. Even if only the 3-bit LSBs need to be changed, the 8-bit MSB should always be programmed next to make the 3-bit LSBs change taking effect.
3. For 11-bit program code 11 'b00000000000, both boost converter and current sinks are turned off.
technologies
KTD3133

Table 10. PWM Register (0x06)

Bit[7] PWM Enable	Bit[6] PWM Active	Bits[5:3] PWM Hysteresis	Bit[2]	$\begin{gathered} \text { Bit[1] } \\ \text { CH2 Enable } \end{gathered}$	$\begin{gathered} \text { Bit[0] } \\ \text { CH1 Enable } \end{gathered}$
0: Enable (Default) 1: Disable	0 : High Active (Default) 1: Low Active	000: 0 LSB 001: 2 LSBs 010: 4 LSBs 011: 6 LSBs (Default) 100: 8 LSB 101: 10 LSBs 110: 12 LSBs 111:14 LSBs	Reserved	0: Disable 1: Enable (Default)	0: Disable 1: Enable (Default)

Table 11. Turn On/Off Ramp Register (0x07)

Bits[7:4]	Bits[3:0] Turn On Ramp Time
$0000: 512 \mu \mathrm{~s}$	$0000: 512 \mu \mathrm{~s}$
$0001: 1 \mathrm{~ms}$	$0001: 1 \mathrm{~ms}$
$0010: 2 \mathrm{~ms}$	$0010: 2 \mathrm{~ms}$
$0011: 4 \mathrm{~ms}$	$0011: 4 \mathrm{~ms}$
$0100: 8 \mathrm{~ms}($ Default	$0100: 8 \mathrm{~ms}$ (Default)
$0101: 16 \mathrm{~ms}$	$0101: 16 \mathrm{~ms}$
$0110: 32 \mathrm{~ms}$	$0110: 32 \mathrm{~ms}$
$0111: 64 \mathrm{~ms}$	$0111: 64 \mathrm{~ms}$
$1000: 128 \mathrm{~ms}$	$1000: 128 \mathrm{~ms}$
$1001: 256 \mathrm{~ms}$	$1001: 256 \mathrm{~ms}$
$1010: 512 \mathrm{~ms}$	$1010: 512 \mathrm{~ms}$
$1011: 1024 \mathrm{~ms}$	$1011: 1024 \mathrm{~ms}$
$1100: 2048 \mathrm{~ms}$	$1100: 2048 \mathrm{~ms}$
$1101: 4096 \mathrm{~ms}$	$1101: 4096 \mathrm{~ms}$
$1110: 8192 \mathrm{~ms}$	$1110: 8192 \mathrm{~ms}$
$1111: 16384 \mathrm{~ms}$	$1111: 16384 \mathrm{~ms}$

Note: If the switching frequency shift up by 20% is selected, all the ramp times will be decreased by 20%.

Table 12. Transition Ramp Register (0x08)

Bit[7]	Bits[6:4] PWM Dimming Transition Ramp Time	Bits[3:0] $1^{2} \mathrm{C}$ Dimming Transition Ramp Time
Reserved	000 : 2ms (Default) 001:4ms $010: 8 \mathrm{~ms}$ 011: 16ms 100: 32ms 101 : 64 ms 110: 128ms 111: 256ms	0000 : $1 \mu \mathrm{~s} /$ step (Default) 0001: 128ms 0010 : 192ms 0011: 256ms 0100 : 320ms 0101: 384ms 0110: 448ms 0111: 512ms 1000:576ms 1001: 640ms 1010: 704ms 1011: 768ms 1100 : 832ms 1101: 896ms 1110: 960ms 1111: 1024ms

Note:

1. If the switching frequency shift up by 20% is selected, all the transition times will be decreased by 20%.
2. The PWM Dimming Transition Ramp Time in the table is defined as the time to change between minimum PWM duty cycle and the maximum PWM duty cycle. The final transition time is the multiplication of the time in the table and the change of the PWM duty cycle.
3. For $I^{2} \mathrm{C}$ Dimming Transition Ramp Time in the table, all the ramp times are fixed when current ramps from one level to the other except " 0000 " setting. For " 0000 " setting, the ramp slope is $1 \mathrm{us} /$ step, the final ramp time is proportional to the 11 -bit current steps.

Table 13. Status Register (0x0A)

Bit[7]	Bit[6]	Bit[5]	Bit[4]	Bit[3]	Bit[2]	Bit[1]	Bit[0]
Reserved	0: Normal (Default) 1: CH2 Fault	0: Normal (Default) 1: CH1 Fault	Reserved	0: Normal (Default) 1: OVP	0: Normal (Default) 1: UVLO	0: Normal (Default) 1: OCP	0: Normal (Default) 1:Thermal Shutdown

Note:

1. $\mathrm{CH} 1 / 2$ fault, UVLO and thermal shutdown are real-time results when backlight mode is enabled and can be reset by toggling backlight mode.
2. OVP and OCP are latched results and can be reset by reading back Status Register 0x0A through $I^{2} \mathrm{C}$ or toggling backlight mode.
3. All the status bits can be reset by VIN power on reset, software reset or toggling HWEN.

Capacitor Selection

Small size ceramic capacitors with low ESR are ideal for all applications. A $10 \mu \mathrm{~F}$ input capacitor and a $1 \mu \mathrm{~F} \sim 2.2$ $\mu \mathrm{F}$ output capacitor are suggested. The voltage rating of these capacitors should exceed the maximum possible voltage at the corresponding pins, and these capacitors should be as close as possible to the IC. Table 14 shows the recommended capacitor vendors.

Table 14. Recommended Capacitor Vendors

Manufacturer	Website
Murata	www.murata.com
AVX	www.avx.com
Taiyo Yuden	www.t-yuden.com

Inductor Selection

An inductor of $4.7 \mu \mathrm{H}$ to $10 \mu \mathrm{H}$ with low DCR can be selected for the boost converter. To decide the current rating of the inductor required for the application, the following equation can be used to estimate the peak inductor current lPEAK in continuous conduction mode (CCM):

$$
I_{P E A K}=\frac{V_{O U T(M A X)} \times I_{O U T(M A X)}}{V_{I N(M I N)} \times \eta}+\frac{V_{I N(M I N)}}{2 L \times F_{S W}} \times\left(1-\frac{V_{I N(M I N)}}{V_{O U T(M A X)}}\right)
$$

where $\mathrm{V}_{\text {OUT (MAX) }}$ is the maximum output voltage, $\mathrm{V}_{\operatorname{IN}(\mathrm{MIN})}$ is the minimum input voltage, $l_{\text {OUT }}(\mathrm{MAX})$ is the maximum output current, Fsw is the boost converter's switching frequency, L is the inductor value, η is the boost converter's efficiency under that condition. Table 15 shows recommended inductors under different application conditions.

Table 15. Recommended Inductors

Application	Inductor Part Number	Value $(\boldsymbol{\mu H})$	DCR $(\mathbf{m} \boldsymbol{\Omega})$	Saturation Current (\mathbf{A})	Dimensions $(\mathbf{m m})$	Manufacturer
$2 P 7 S$ $(M a x .20 \mathrm{~mA} / \mathrm{Ch})$	LQH3NPN100MJR	10	240 typ	0.810	$3.0 \times 3.0 \times 1.1$	Murata

Schottky Diode Selection

Using a schottky diode is recommended because of its low forward voltage drop and fast reverse recovery time. The average current rating of the schottky diode should exceed the maximum output current, and its peak current rating should exceed the peak inductor current. Its voltage rating should also exceed the OVP setting. Table 16 shows the recommended schottky diode.

Table 16. Recommended Schottky Diode

Application	Schottky Diode Part Number	Forward Voltage (V)	Forward Current (A)	Reverse Voltage (V)	Manufacturer
All	PMEG4010B	0.54	1	40	NXP

Recommended PCB Layout

PCB layout is very important for high frequency switching regulators in order to keep the loop stable and minimize noise. The input capacitor (CIN) should be very close to the IC's VIN pin and PGND pin in order to get the best decoupling. The path between the inductor, LX pin, schottky diode and the output capacitor (Cout) should be kept as short as possible to minimize noise and ringing. To reduce power loss, the trace through the inductor, LX pin, schottky diode and Cout should be as short and wide as possible. Both input and output capacitors' GND terminals should be connected together on the PCB top layer and on the bottom layer GND plane. Figure 7 shows the WLCSP-12 recommended PCB layout and Figure 8 shows the TQFN-16 recommended PCB layout.

Figure 7. WLCSP-12 Recommended PCB Layout

Figure 8. TQFN-16 Recommended PCB Layout

Packaging Information

WLCSP34-12 ($1.190 \mathrm{~mm} \times 1.640 \mathrm{~mm} \times 0.62 \mathrm{~mm}$)

Recommended Footprint

* Dimensions are in millimeters.

KTD3133

TQFN33-16 (3.00mm x $3.00 \mathrm{~mm} \times 0.75 \mathrm{~mm}$)

Dimension	mm		
	Min.	Typ.	Max.
A	0.65	0.75	0.85
A1	0.000	0.025	0.050
A2	0.154	0.203	0.280
b	0.18	0.23	0.30
C		0.3 REF	
D	2.95	3.00	3.05
D1		1.7 REF	
E	2.95	3.00	3.05
E1		$1.7 R E F$	
e	0.45	0.50	0.55
L	0.30	0.40	0.50
S		$0.25 R E F$	

Recommended Footprint

* Dimensions are in millimeters.

Kinetic Technologies cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Kinetic Technologies product. No intellectual property or circuit patent licenses are implied. Kinetic Technologies reserves the right to change the circuitry and specifications without notice at any time.

[^0]: 1. Stresses above those listed in Absolute Maximum Ratings may cause permanent damage to the device. Functional operation at conditions other than the operating conditions specified is not implied. Only one Absolute Maximum rating should be applied at any one time.
 2. Junction to Ambient thermal resistance is highly dependent on PCB layout. Values are based on thermal properties of the device when soldered to an EV board.
 3. "XXYYZZZZ" / "YYZ" are the date code, assembly code and serial number / the date code and assembly code.
[^1]: 4. KTD3133 is guaranteed to meet performance specifications over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ operating temperature range by design, characterization and correlation with statistical process controls.
 5. The current matching among channels is defined as $\left\|\|_{\text {sink }}-\left.I_{\text {AvG }}\right|_{\text {Max }} / I_{\text {Avg }}\right.$.
